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Systematic Derivation of Anisotropic
PML Absorbing Media in Cylindrical

and Spherical Coordinates
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Abstract—A simple and systematic derivation of anisotropic
perfectly matched layers (PML’s) in cylindrical and spherical
coordinates is presented. The derivation is based on the analytic
continuation of Maxwell’s Equations to complex space. Through
field transformations, results for Cartesian anisotropic PML
media are recovered and, more importantly, a generalization
of the anisotropic PML to cylindrical and spherical systems is
obtained, providing further clarification on the PML concept. As
expected, these new PML media are cylindrically and spherically
layered, respectively.

Index Terms—Absorbing boundary conditions, anisotropic me-
dia, perfectly matched layer.

I. INTRODUCTION

T HE perfectly matched layer (PML) absorbing boundary
condition, first derived for Cartesian coordinates and

planar interfaces [1], was recently extended to cylindrical
[2]–[5] and spherical coordinates [2], [3]. In [2] and [3]
this was achieved through an analytic continuation of the
frequency-domain Maxwell’s equations to complex space. As
a result, the resultant fieldsinsidethe PML arenotMaxwellian
and the question naturally arises if it is possible to derive
a Maxwellian anisotropic PML medium on cylindrical and
spherical coordinates, as done for the Cartesian case [6],
[7]. An anisotropic-medium formulation has the advantage of
providing a physical basis for possible engineered artificial
materials [8] and an easier interfacing with methods other
than the finite-difference time-domain (FDTD), e.g., the finite-
element method (FEM) [9], [10].

Here, a systematic analytical approach to derive the consti-
tutive tensors for anisotropic PML formulations on Cartesian,
cylindrical, and spherical coordinates from the complex space
Maxwell’s Equations is developed. The relation between the
anisotropic PML fields and the complex space PML fields on
each of these systems is elucidated by presenting the pertinent
mapping equations.

From the constitutive tensors obtained, it explains why a
previously proposed set of tensors for cylindrical and spherical
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anisotropic PML media [10], [11] provides only anapproxi-
mately matched layer.

It should be noted that, for the cylindrical case, an al-
ternative derivation of anisotropic PML was carried out on
[4] through a graphical construction. The constitutive tensors
obtained there coincide with those of our analysis.

II. FROM COMPLEX SPACE TO ANISOTROPICPML

In [2] and [3] it was shown how the analytic continuation of
the frequency-domain Maxwell’s equations to complex space
achieves the reflectionless absorption of the electromagnetic
waves. This motivated the development of PML-FDTD al-
gorithms in cylindrical and spherical grids [3]. In analogy
to the Cartesian PML case [6], [7], the objective here is to
derive a mapping of the non-Maxwellian fields of [3] to a set
of Maxwellian fields on cylindrical and spherical anisotropic
PML media and to determine the constitutive parameters of
such media.

To introduce this general approach on a simpler setting
and for completeness, we first discuss it briefly for Cartesian
coordinates.

The -component of the Faraday equation on complex space
[2] reads as ( convention)

(1)

where ( ) are the stretching variables [2], [12].
The fields in (1) do not satisfy Maxwell’s equations when

(i.e., inside the PML), and to make this fact more
explicit the superscript is added onto the field variables.
However, if we multiply (1) by and using the fact that

and commute when , we arrive at

(2)

If we then repeat the same procedure for the other components
of the curl equations and introduce a new set of fields

and , then this new set of fields obeys
Maxwell’s equations on an anisotropic medium of constitutive
parameters and , with

(3)

as obtained in [7]. This is the most general form for the con-
stitutive tensors on the Cartesian anisotropic PML formulation
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(corresponding to the PML medium at corner interfaces [7]).
In a single planar interface case, only the stretching coordinate
normal to the interface has and the medium is uniaxial,
as first derived in [6].

In the cylindrical system, we write the Faraday’s equation
on complex space as

(4a)

(4b)

(4c)

and are complex spatial variables defined as

(5)

so as to achieve the reflectionless absorption of the elec-
tromagnetic waves in the- and -directions, respectively
[2], [3]. From (5) we have that and

. If we substitute these last identities on
(4a)–(4c), multiply (4a) by , (4b) by , and (4c) by

, then (4) can be recast into the following form:

(6a)

(6b)

(6c)

From (6a)–(6c) and their duals (Ampere’s equation), we see
that a new set of fields defined by , ,

(similarly for the field), obeys Maxwell’s
equations on an anisotropic medium of constitutive parameters

and , with

(7)

If we set everywhere, this tensor is identical to
the one derived in [4] through a graphical approach. By
defining , then the above tensor and the field
mapping equations have the sameformal appearance as in
the Cartesian case. Both Maxwellian and non-Maxwellian
formulations satisfy the same boundary conditions on the
continuity of tangential fields across the PML interface. This
is because the corresponding tangential fields differ by factors
that are continuous across PML interfaces and

.1 Because of this, the perfect matching condition
for one of the formulations follows automatically from the
other, a requirement of consistency. This perfect matching

1Sinces� is a function of� only, sz is a function ofz only, and~�=� is
continuous everywhere as implied by (5).

condition was independently demonstrated for the complex-
space formulation in [2] and [3], and for the anisotropic-
medium formulation in [4].

However, the normal components satisfyin generaldiffer-
ent boundary conditions, since and are not necessarily
continuous (although in the practical numerical implementa-
tion, this is usually imposed to minimize spurious reflections
due to discretization). Moreover, the ( ) fields do not
satisfy divergence-free conditions inside the PML. Also, it is
evident that if , then , and we recover the
Cartesian case. From this analysis, the reason is clear why
the constitutive tensors introduced in [10] with do not
correspond to a true PML and approximates a PML only in the
limit of large radius: because the radial scaling factor
is not included.

In the spherical system, we write the Faraday’s equation on
complex space as

(8a)

(8b)

(8c)

with being defined analogously as in (5) [3]. If we substitute
on (8b)–(8c), multiply (8a) by ,

and (8b)–(8c) by , then (8) can be recast as

(9a)

(9b)

(9c)

and similarly for the Ampere’s equation. A set of fields defined
by , (similarly

for the field) obeys Maxwell’s equations on an anisotropic
medium of constitutive parameters and , with

(10)

By defining , then this tensor and the field
mapping equations have the same formal appearance as the
previous ones. The continuity of everywhere implies that
both formulations will satisfy the same boundary conditions on
the continuity of the tangential fields across a PML interface
at . The perfectly matched condition for one of
the formulations then follows automatically from the other.
For the spherical case, the perfectly matched condition was
demonstrated for the complex-space formulation in [2] and
[3], and can be independently demonstrated for the anisotropic
formulation along very similar lines to the cylindrical case as
done in [4]. The same observations made on the cylindrical
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case about normal boundary conditions and the limit of infinite
radius also apply here.

It can also be easily verified that implies

in all three coordinate systems.

III. FINAL DISCUSSION

A simple and systematic way to derive anisotropic PML’s
from the complex space Maxwell’s Equations in different
coordinate systems has been presented. Through this anal-
ysis, the constitutive tensors of the PML media and the
mapping equations relating the fields of the complex space
and anisotropic formulations are derived. From the mapping
equations, it was shown that the fields in the complex space
and anisotropic formulations differ by factors that are equal
to unity inside the physical region and are continuous across
PML interfaces for the tangential field components, implying
an equivalence of perfectly matched conditions.

From the mapping equations and by using the usual form
of frequency dependence for the stretching coordinates

(with and ) , the
time-domain relationship between the fields inside the PML
can be written in a generic form as

(11)

(with ) and similarly for the H fields.
The parameters and are, in any case, positive, except
for the parameter in the case of theangular components
on a convex PML surface (where and have negative
imaginary parts and has possibly poles on the upper half of
the complex space). This fact implies an inherent asymmetry
between the convex/concave cylindrical and spherical PML’s
(defined over inner/outer domains). This, together with the
causality constraints to be observed by[11], [13], could have
severe consequences on the stability of the FDTD scheme.
Although simulations of cases using outer domain (concave

surface) cylindrical and spherical PML’s [3] were found to be
stable, it is still an open question for the convex surface PML.
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