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Systematic Derivation of Anisotropic
PML Absorbing Media in Cylindrical
and Spherical Coordinates

F. L. Teixeira, Student Member, IEEEAnd W. C. ChewFellow, IEEE

Abstract—A simple and systematic derivation of anisotropic anisotropic PML media [10], [11] provides only approxi-
perfectly matched layers (PML's) in cylindrical and spherical mately matched layer.
coordinates is presented. The derivation is based on the analytic It should be noted that, for the cylindrical case, an al-

continuation of Maxwell's Equations to complex space. Through ¢ tive derivati f anisotropic PML ied out
field transformations, results for Cartesian anisotropic PML ernative derivation of anisotropic was carried out on

media are recovered and, more importantly, a generalization [4] through a graphical construction. The constitutive tensors
of the anisotropic PML to cylindrical and spherical systems is obtained there coincide with those of our analysis.

obtained, providing further clarification on the PML concept. As
expected, these new PML media are cylindrically and spherically I

layered, respectively. . FROM COMPLEX SPACE TO ANISOTROPICPML

In [2] and [3] it was shown how the analytic continuation of
the frequency-domain Maxwell's equations to complex space
achieves the reflectionless absorption of the electromagnetic
waves. This motivated the development of PML-FDTD al-

. INTRODUCTION gorithms in cylindrical and spherical grids [3]. In analogy
HE perfectly matched layer (PML) absorbing boundartp the Cartesian PML case [6], [7], the objective here is to
condition, first derived for Cartesian coordinates anderive a mapping of the non-Maxwellian fields of [3] to a set
planar interfaces [1], was recently extended to cylindricaf Maxwellian fields on cylindrical and spherical anisotropic
[2]-[5] and spherical coordinates [2], [3]. In [2] and [3]PML media and to determine the constitutive parameters of
this was achieved through an analytic continuation of trgich media.
frequency-domain Maxwell’s equations to complex space. AsTo introduce this general approach on a simpler setting
a result, the resultant fieldssidethe PML arenot Maxwellian and for completeness, we first discuss it briefly for Cartesian
and the question naturally arises if it is possible to deriveordinates.
a Maxwellian anisotropic PML medium on cylindrical and Thez-component of the Faraday equation on complex space
spherical coordinates, as done for the Cartesian case [8] reads as{~*“* convention)
[7]. An anisotropic-medium formulation has the advantage of 9Ec OE° 1 9E¢
providing a physical basis for possible engineered artificial wpHy = agﬁ - 8; =——=
materials [8] and an easier interfacing with methods other i
than the finite-difference time-domain (FDTD), e.g., the finitavhere s¢ (¢ = z,y, 2) are the stretching variables [2], [12].
element method (FEM) [9], [10]. The fields in (1) do not satisfy Maxwell’'s equations when

Here, a systematic analytical approach to derive the consti- # 1 (i.e., inside the PML), and to make this fact more
tutive tensors for anisotropic PML formulations on CartesiagXPplicit the superscript is added onto the field variables.
cylindrical, and spherical coordinates from the complex spat@wever, if we multiply (1) bys,s. and using the fact that
Maxwell's Equations is developed. The relation between tiie andd/9¢’ commute wher( # (', we arrive at
anisotropic PML fields and the complex space PML fields on  8yS. . K . 3 .
each pf these systems is elucidated by presenting the pertinent ~ “H™_ (soH) = a_y(szEz) - g(syEy) (2)
mapping equations.

From the constitutive tensors obtained, it explains why If we then repeat.the same procedure for the other.components
previously proposed set of tensors for cylindrical and sphericdl e curl equations and introduce a new set of fielifs=

scE: and HE = scHE, then this new set of fields obeys
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(corresponding to the PML medium at corner interfaces [7ondition was independently demonstrated for the complex-
In a single planar interface case, only the stretching coordinaigace formulation in [2] and [3], and for the anisotropic-
normal to the interface has # 1 and the medium is uniaxial, medium formulation in [4].

as first derived in [6]. However, the normal components satigfygeneraldiffer-
In the cylindrical system, we write the Faraday’s equatioent boundary conditions, sineg and s, are not necessarily
on complex space as continuous (although in the practical numerical implementa-

tion, this is usually imposed to minimize spurious reflections

iwpHE = iaEg - aE}ﬁ (4a) due to discretization). Moreover, thé&{, H¢,) fields do not
Pop oy 0z satisfy divergence-free conditions inside the PML. Also, it is
fwpHS = L} _ OEZ (4b) evident that ifp — oo, then(g/p) — 1, and we recover the
az ap Cartesian case. From this analysis, the reason is clear why
) 19, . 10k the constitutive tensors introduced in [10] with = 1 do not
Wi ~§(pE¢) T 599 (4c) correspond to a true PML and approximates a PML only in the

limit of large radius: because the radial scaling fadirp)
Z and p are complex spatial variables defined as is not included.
z p In the spherical system, we write the Faraday’s equation on
Z=2z +/ s.(Z)d7, p = po +/ sp(p')dp’ (5) complex space as
20

0

. . . . . 1 a . o OFE§

so as to achieve the reflectionless absorption of the elec- wpH, = Fong %(smw%) - " (8a)
tromagnetic waves in the- and p-directions, respectively ! 1111 9EC 10

[2], [3]. From (5) we have that)/dp = (1/s,)0/0p and iwpHy = —— =" — = —(FEY) (8b)
d/0% = (1/s.)8/9=z. If we substitute these last identities on rsing 0¢ 7 87’6

(4a)—(4c), multiply (4a) bys.(5/p), (4b) bys.s,, and (4c) by wwpHe = 22 (rpgy - L9 (8¢)

5 i ; . ¢ T = A d =
s,(p/p), then (4) can be recast into the following form: 7o 7 o9

with 7 being defined analogously as in (5) [3]. If we substitute
. 5\ s- o 10 o O (PES /97 = (1/s,)0/9r on (8b)—(8c), multiply (8a) by(7/r)?,
zqu;);}(s,,Hp) :;8_</)(8Z ) - 8z< P ) (6a) and (8b)—(8c) bys,.(7/r), then (8) can be recast as

P P ﬁH; - 7] c a c ~\ 2 1
wnl (5 oo (%2 =aton) - B0 @), [() ;] (s, H)
Nz 197 (PES ' R
zwu[<8>s—p}(ssz§) :——[p<—¢>} 1 [a]. (TES a (TE;
pJs. pOp p = ——<—|sinf - = (9a)
10 ( ) rsinf |90 r ap\ r
— = —(s,E°). (6¢) FHE 1 19[ (TES
o P=p r (e ) _ e my_29|, I
009 qu&( r ) rsin 6 8(7)(87 E) r dr [7< r )} (9b)
From (6a)—(6¢c) and their duals (Ampere’s equation), we see FHC 19 FEC 19
i i _ c a _ (x c P e\ _2Y1. Ly _ - Ec) (9C)
that a new set qf ﬂ.elds defined 3, = s, ES, ES = (5/p)ES, WSy == . 89(3” ,,
LEe = s FES (similarly for the H field), obeys Maxwell's
equations on an anisotropic medium of constitutive paramet@sd similarly for the Ampere’s equation. A set of fields defined

r

I = pA and g = €A, with by Ef = s.E;, E} = (7/r)E5 E§ = (7/r)E§ (similarly
~ 5\ /s . 5\ /s for the H field) obeys Maxwell’s equations on an anisotropic
A= ﬁﬁ<3><—z> + ¢¢<§)(szs,,) + 77<B><—”> (7) medium of constitutive parametefis= ;A ande = €A, with
P\ 5, p p)\s-
N 2
If we sets, = 1 everywhere, this tensor is identical to A= ff<7_> <i) + (éé+¢}¢})37,_ (10)
the one derived in [4] through a graphical approach. By "/ \sr

defining s, = (p/p), then the above tensor and the fielgyy yefinings, — s, = (7/r), then this tensor and the field
mapping equations have the sarfeemal appearance as in yanhing equations have the same formal appearance as the
the Cartesian case. Both Maxwellian and non-Maxwellla&eviOus ones. The continuity @7/ everywhere implies that

formulations satisfy the same boundary conditions on ey formulations will satisfy the same boundary conditions on
continuity of tangential fields across the PML interface. Thig,e continuity of the tangential fields across a PML interface

is because the corresponding tangential fields differ by factqj[tsT — 1. The perfectly matched condition for one of
that are, continuous across PML interfaces= 2z and e formylations then follows automatically from the other.
p = po.t Because of this, the perfect matching conditiog, e spherical case, the perfectly matched condition was
for one of the_z formulations fqllows autor_nanoally from th_edemonstrated for the complex-space formulation in [2] and
other, a requirement of consistency. This perfect matchipgy g can be independently demonstrated for the anisotropic
1Sinces, is a function ofp only, s. is a function of= only, andj/p is formullanon along very similar Ilngs to the cylindrical case as
continuous everywhere as implied by (5). done in [4]. The same observations made on the cylindrical
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case about normal boundary conditions and the limit of infinisurface) cylindrical and spherical PML'’s [3] were found to be

radius also apply here. 5
It can also be easily verified tha¥-£¢ = 0 implies

V- (7\ . Ea) = 0 in all three coordinate systems.

Il. W

A simple and systematic way to derive anisotropic PML's|;
from the complex space Maxwell's Equations in different
coordinate systems has been presented. Through this anal-
ysis, the constitutive tensors of the PML media and theg
mapping equations relating the fields of the complex space
and anisotropic formulations are derived. From the mappin
equations, it was shown that the fields in the complex space
and anisotropic formulations differ by factors that are equal
to unity inside the physical region and are continuous acro
PML interfaces for the tangential field components, implying
an equivalence of perfectly matched conditions.

From the mapping equations and by using the usual forr{16]
of frequency dependence for the stretching coordinates
ac +io¢/w (With ar > 1,0, > 0, and¢ = z,y, 2, p,7) , the

FINAL DISCUSSION

time-domain relationship between the fields inside the PMLm
can be written in a generic form as
(8]

g g

—E!=|a=—+0)E 11

at ¢ <O‘at+/)< (11)
(With ¢ = z,4,2,p,¢,r,6) and similarly for the H fields. [
The parametersy and 3 are, in any case, positive, except
for the parameteys in the case of theangular components 0]

on a convexPML surface (wheres and 7 have negative
imaginary parts and. has possibly poles on the upper half of
the complex space). This fact implies an inherent asymmeth}!
between the convex/concave cylindrical and spherical PML'’s
(defined over inner/outer domains). This, together with tH&2]
causality constraints to be observedbji1], [13], could have
severe consequences on the stability of the FDTD schemg;
Although simulations of cases using outer domain (concave

stable, it is still an open question for the convex surface PML.
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